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Abstract : Some accounts of evidence regard it as an objective relationship holding

between data and hypotheses, perhaps mediated by a testing procedure. Mayo’s

error-statistical theory of evidence is an example of such an approach. Such a view

leaves open the question of when an epistemic agent is justified in drawing in

inference from such data to a hypothesis. Using Mayo’s account as a launching

point, I propose a framework for addressing the justification questions via a

relativized notion, which I designate security, meant to conceptualize practices

aimed at the justification of inferences from evidence. I then show how the notion

of security can be put to use by showing how two quite different theoretical

approaches to model criticism in statistics can both be viewed as strategies for

securing (in my sense) claims about statistical evidence.
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1 Introduction

Error-statistics (ES) proposes that evidence derives from testing procedures that

constitute severe error probes. In statistical settings, ES employs a modified

version of Neyman-Pearson Theory (NPT). Like NPT, the error-statistical

approach uses probability distributions as models of the reliability of testing

procedures, i.e., the rate at which they yield errors with regard to a family of

competing hypotheses, which are themselves represented within the statistical

model. Roughly, good tests in the ES view are those with appropriately low rates

of error in indicating discrepancies from a family of competing hypotheses, and

good evidence for a hypothesis results from the appropriate use of good tests. Mayo

writes, “Data in accordance with hypothesis H indicate the correctness of H to the

extent that the data result from a procedure that with high probability would have

produced a result more discordant with H, were H incorrect” (Mayo 1996, 445n).

Putting this idea in more schematic terms, the ES theory of evidence can be

articulated in terms of Mayo’s ‘severe test’ requirement: Supposing that hypothesis

H is subjected to test procedure T employing test statistic x, resulting in data x0,

Data x0 in test T provide good evidence for inferring H (just) to the extent

that H passes severely with x0, i.e., to the extent that H would (very
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probably) not have survived the test so well were H false. (Mayo and Spanos

2006, 328)

The idea of severity is elaborated according to the following schema: H passes a

severe test T with data x0 if

SR1 x0 fits H, and

SR2 with very low probability, test T would have produced a result that fits H as

well as (or better than) x0 does, if H were false (and some alternative

incompatible with H were true).

To a first approximation, one can say that the features of testing procedures

(their error rates) that probability statements are meant to capture in this context

are putatively objective features that obtain or not independently of what is known

or believed by any individual.1 These features can be thought of as characterizing a

certain kind of reliability for the procedures employed in the inference from data to

statistical generalizations.

Here I propose to press a question regarding the relationship between

evidence as defined by the error-statistical approach and the justification of

inferences based upon such evidential relations. Does the fact that data x0 in test

T provide good evidence for inferring H suffice for an individual to be justified in

drawing that inference? ES certainly does propose a relationship between the error

probabilities of the testing procedures used in drawing inferences from data and the

justificatory status of those inferences. For example, a recent defense and

elaboration of the ES account provides the following “inferential rationale” to

articulate the basis for methodologies centered on error-probabilities:

Error probabilities provide a way to determine the evidence a set of data x0

supplies for making warranted inferences about the process giving rise to data

x0 (Mayo and Spanos 2006, 327, emphasis added)2
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A careful reading, however, reveals this statement to concern how error

probabilities are to be used in the ES account, and not a statement about the

conditions under which inferences are in fact justified. More precisely, the severe

test requirements quoted above articulate conditions under which data count as

good evidence for a hypothesis. To say that (i) data x0 are good evidence for H,

however, is not the same as saying that (ii) a person in such-and-such an epistemic

situation is justified in accepting H on the basis of x0.

In this paper, I will present the ES account of evidence as an unrelativized

account. I do not propose here to assess the ES view vis a vis other accounts of

evidence. Rather, I will argue that satisfying the SR1 and SR2 requirements does

not suffice for the justification of inference by a given epistemic agent. To help

close this gap between evidence and justification, I will propose a relativized

concept that is compatible with, though distinct from, the requirements of the ES

account of evidence. This concept, which I call security, is defined in terms of truth

across epistemically possible scenarios. Since epistemic possibility is a relative

notion, so is security. I propose that the value of this concept lies chiefly in its

heuristic use as way of thinking about and developing justificatory practices of

securing inferences from data (i.e., increasing the relative range of epistemically

possible scenarios across which those inferences are valid), in a manner that is

independent of the statistical framework in which one works (whether

error-statistical, Bayesian, or otherwise). To illustrate the value of the security

framework, I discuss two general strategies of securing inferences: weakening and

strengthening strategies. I then turn to theoretical statistics and discuss two

approaches to model criticism in statistics — robust statistics and mis-specification

testing — as examples of the weakening and strengthening strategies respectively.
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2 From N-P to ES: Reliability, Evidence, and Methodology

The roots of the error-statistical approach lie in the frequentist tradition of

mathematical statistics as that tradition has evolved from its origins in the work of

R. A. Fisher and the joint efforts of Jerzy Neyman and Egon Pearson. To help

clarify the error-statistical approach, then, it will be useful to consider first the

orthodox Neyman-Pearson approach to statistical inference, and then to consider

how ES departs from such orthodoxy.

Suppose that we seek answers to questions regarding the value of a “location

parameter” µx for a distribution function f governing a series of random variables

X ≡ X1, X2, . . . , Xn. This parameter might, for example, correspond to a physical

quantity such as the mass of a newly discovered elementary particle, and the

random variable might correspond to estimates of that quantity based on

measurements made on its decay products. Suppose further that we know f to be

normal, with unknown mean µx and known variance σ2
0. We might start by asking

whether µx exceeds a certain minimum value µ0.

Consider first an “orthodox” Neyman-Pearson approach to specifying a test.

The basic idea behind N-P testing is that, by specifying in advance the hypotheses

among which a discrimination is to be made, and by specifying a statistical model

that adequately represents data-generation as a stochastic process, one can exploit

the probabilistic features of the statistical model, and use it as a basis for drawing

inferences by using testing rules with error probabilities that are good or even

optimal in a certain sense, to be explored below. Orthodox N-P thus provides a

framework for making decisions in which the rate at which errors are committed

can in principle be controlled. For this reason, many interpret N-P testing in

behaviorist terms, according to which N-P tests serve the aim, not of evaluating the

evidence for or against some proposition, but of deciding what to do in a way that

will limit one’s long-run losses from erroneous inferences. Neyman himself

advocated such an approach (Neyman 1950).
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An N-P test thus requires the prior specification of a statistical model. This

model can be written as Mθ(x) = {f(x;θ),θ ∈ Θ},x ∈ Rn
X . Here f(x;θ),x ∈ Rn

X

is the joint distribution of X and the vector θ gives the statistical parameters for

that distribution, which are represented as lying somewhere in the parameter space

Θ. The primary function of such a model is to represent “often in considerably

idealized form, the data-generating process” and is thus a “model of physically

generated variability” (Cox 2006). A statistical model can be described by

reference to the assumptions it makes regarding particular statistical characteristics

of the data-generating process. In the present example, these assumptions could be

given with reference to a particular probability model defined as follows:

Φ = {f(x;θ) =
1

σ
√

2π
exp{−(x− µ)2

2σ2
},θ ≡ (µ, σ2) ∈ R× R+, x ∈ R}. (1)

Our assumptions are that: (1) E(Xi) = µ, i = 1, 2, . . . (the expectation value of Xi,

or distribution mean, is constant), (2) V ar(Xi) = σ2 (the variance, defined as

V ar(X) ≡ E[(X − E(X))2], is constant), (3) the random variables X are

independent (i.e., f(x1, x2, . . . , xn) = f1(x1) · f2(x3) · · · fn(xn), for all

(x1, x2, . . . , xn) ∈ Rn). Finally, we make the sampling assumption that

X ≡ X1, X2, . . . Xn is a random sample.

Next, the N-P approach requires us to make explicit both the null hypothesis

and the alternative against which it is to be tested. The former might be thought

of as that hypothesis, departures from which we are particularly interested to

discover. Thus, the null here might state H0 : µx ≤ µ0. The alternative would state

H1 : µx > µ0. This can be thought of as a matter of demarcating two regions in the

space Θ of possible values of the parameter µ. H0 : µ ∈ Θ0 is to be tested against

H1 : µ ∈ Θ1.

To figure out the error probabilities for the test we use, we need to choose a

feature of the data that will serve as a criterion for accepting or rejecting the null

hypothesis. For this example the test statistic κ(X) ≡ σ−1
√
n(µ̂n − µ0), where
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µ̂n ≡ n−1
∑n

i=1Xi is the sample mean, will allow us to employ a test of H0 versus

H1 that is optimal in the following sense: We note first that under the assumption

that the distribution F is normal, µ̂n, itself a random variable, is the best estimator

for µx, in the sense that it is unbiased (the mean of the sampling distribution for

µ̂n equals the value of the parameter µx), efficient (its variance is minimized, both

with regard to a finite sample and asymptotically as n goes to infinity), and

strongly consistent (as n goes to infinity, the value of µ̂n is equal to the true value

of µx with probability one). Moreover, as shown by the central limit theorem,

σ−1
√
n(µ̂n − µ) is asymptotically Standard Normally distributed, with mean equal

to zero and variance equal to one (thus, µ̂n is asymptotically Normal).

This last point allows us the convenience of using a Standard Normal table to

follow the orthodox Neyman-Pearson procedure of first choosing a cut-off or critical

value of the test statistic for rejecting the null hypothesis, such that the probability

of rejecting the null hypothesis when true does not exceed a certain predetermined

value, such as 0.05 (this would require setting the cutoff at c = 1.96). We would

then consider the power of this test, defined to be one minus its probability of

accepting the null when the alternative is true (the type II error). Since the

alternative here is a compound hypothesis (it encompasses all hypotheses regarding

the value of µx such that µx > µ0), the power of this test does not take on a single

value, but is instead a function, defined over the entire parameter space Θ, which

can then be used to determine the type II error probability (and thus the power)

for particular values of µ. An optimal test will be one that is uniformly most

powerful (UMP), i.e., is such that, for any µ ∈ Θ, its power is at least as great as

that of any test using another test statistic. Although UMP tests do not always

exist, there is such a test for this example; it is the test just described, using κ(X)

as a test statistic.

Supposing, then, that we obtain data such that the value of κ(x) lies in the

critical region (e.g., κ(x) = 2.10), the orthodox Neyman-Pearson inference would

be to reject the null hypothesis, and the probability of doing so erroneously would
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be reliable insofar as it would be limited to not more than 0.05. By contrast,

should the result fall short of the cutoff value (say, κ(x) = 1.20), then the test

would yield the result that H0 is not rejected. We can then ask what the

probability is of failing to reject H0 given specific alternative values of µx. For

example, if we suppose that the true value of µx is 10.8, then the probability that

this test would fail to reject H0 (i.e., that κ(x) < 1.96) is 0.02, and the power of the

test is 0.98. However, assuming that µx = 10.2, the probability of a type II error is

0.83, and the power of the test is a mere 0.17. These results derive from the

distribution of the test statistic, under the assumed underlying distribution f .

Thus far, however, we have been considering only the “orthodox” N-P

approach. As developed by Mayo, however, the ES approach would have us go

beyond the more “behavioristic” orthodox approach to N-P testing.3 In the ES

approach, reliability in the form of error-probabilities enters not merely as a way of

limiting potential losses in a series of repeated decisions based on data, but as a

tool for characterizing how well the data discriminate between various possible

answers to the question being investigated. This is most apparent in considering

how ES utilizes post-data severity analyses with regard to a range of hypotheses.

Mayo and Spanos (2006) note a number of difficulties with the orthodox

approach, many of which turn on the fact that the error probabilities we have used

thus far are concerned only with whether the observed results fall inside or outside

the critical region. In effect this is to treat outcomes that fall just short of the cutoff

the same as those that fall very close to the expectation value of the test statistic

under the null, while treating a result just short of the cutoff entirely differently

from a result that just barely exceeds it. Meanwhile, any outcome that exceeds the

cutoff value is treated the same, regardless of the magnitude by which it exceeds it.

Although such an approach may well be suitable for a behavioristic approach that

is concerned only to limit the rate at which erroneous decisions are made, it is

ill-suited for the purpose of determining just what inferences are warranted by the

data in hand regarding the family of hypotheses under consideration.
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To address such issues, the ES methodology proposes the use of a severity

analysis based on the actual data that looks at the error probabilities with the

cutoff set at the observed value of the test statistic, under a range of possible

alternative hypotheses. Such analysis is guided by “meta-statistical principles” and

aims to address the problem previously mentioned of determining what kinds of

inferences from a given test can be justified. As this approach involves a certain

kind of “re-use” of data that some hold to be problematic, it should be emphasized

that ES draws a disinction between the primary inference (basically, the inference

to an “accept/reject” conclusion, drawn using a prespecified testing procedure with

specific error probabilities), and the post-data severity analysis that relies on

assumptions about counterfactual error probabilities. The error-probabilities

employed are counterfactual in the sense that they are the probabilities that the

test statistic would take some value greater or less than the observed value under

various hypotheses of interest.4 These post-data severity analyses do not constitute

new statistical tests based on the same data, but are rather a means of determining

the epistemological import of the initial testing results – something for which the

orthodox behaviorist approach is inadequate.

Suppose, following Mayo’s standard notation, we use SEV (T, d(x0), H) to

mean “the severity with which hypothesis H passes test T with an observed value

for the test statistic of d(x0).” As I will next illustrate, such measures of severity

depend on error probabilities in a manner that depends on the discrimination of

interest, and on whether the original test T (defined pre-data in terms of a

particular cut-off) led to an acceptance or rejection of the null hypothesis.

In our example above, suppose that the observed value of µ̂n = 10.35. This

corresponds to a value of κ(x) = 1.75, which falls short of the cutoff value of 1.96,

but not by a lot. Thus our original two-sided test T gives the output “accept H.”

With a severity analysis, we would next ask the probability of getting so large a

value of κ(x), supposing that the true value of µ exceeds µ1 = µ0 + γ, for some

relevant values of γ. In other words, although our test accepts the null, we are
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interested to know whether the test would probably have yielded so large a value of

κ(x), even though the value of µ is actually greater than µ0 by particular amounts.

So, for example, to determine whether µ ≤ 10.2 passes with high severity, we

could evaluate the probability P (κ(x) > κ(x0);µ = 10.2) = 0.22. This gives the

lower bound of the severity with which µ ≤ 10.2 passes against particular

alternative values of µ. Mayo and Spanos articulate the relevant principle as

follows (notation adapted to mine):

If there is a very high probability that κ(x0) would have been larger than it

is, were µ > µ1, then µ ≤ µ1 passes the test with high severity, i.e.

SEV (µ ≤ µ1) is high. If there is a very low probability that κ(x0) would have

been larger than it is, even if µ > µ1, then µ ≤ µ1 passes the test with low

severity, i.e. SEV (µ ≤ µ1) is low. (Mayo and Spanos 2006, 337)

Clearly, in this example, the severity with which µ ≤ 10.2 passes is rather

low. For comparison, given the same data, the hypothesis that µ ≤ 10.4 passes

with a severity of 0.60, while µ ≤ 10.8 passes with severity 0.99. Of these three

possible inferences, only the last is well supported by the evidence.

Notice that these rules for post-data severity analysis provide methods for

determining what hypotheses have passed with what degree of severity. As

methods, therefore, they constitute a means by which investigators can acquire the

requisite knowledge for distinguishing between justified and unjustified inferences.

The severity relationships themselves remain objective in the sense that they

obtain independently of any individual’s epistemic situation, thus underscoring

that as a theory of evidence, the ES account relies on objective criteria.

When satisfied, these criteria – stated in terms of error probabilities – ensure

that the investigator is using a severe error probe. This is the central notion of

error-elimination that is at work in the ES account. What it means is that a

testing procedure is being used that reliably discriminates between different

possible answers to an investigator’s question, and in that sense supports learning
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about the phenomenon which that question is about. However, that a testing

procedure can serve as the basis for learning does not entail that any particular

individual is in a position to learn from that procedure. I propose that we here

encounter a gap that needs to be filled if we are to have an adequate epistemology

of science built on the error statistical approach.

Significantly, the ES criteria for evidence as articulated in SR1 and SR2 are

not relativized to an investigator’s epistemic situation. They depend on objective

features of the testing situation and on a particular class of alternative hypotheses.

This latter dependence simply reflects the fact that a test that is a good probe for

discriminating a hypothesis against one set of alternatives might not be good for

discriminating against another, an issue that has been noted in Staley (2008).

However, given a set of competing hypotheses, the error probabilities are

determined by the test criteria, and do not depend in any way on the epistemic

situation of the investigator, except insofar as it plays a causal role in leading her

to specify the criteria that she does.

Thus, if data x0, testing procedure T , and hypothesis H satisfy SR1 and

SR2, then they do so independently of the knowledge, beliefs, or abilities of any

epistemic agents, whether performing experiments, drawing inferences, or reading

research reports. Of course, such factors may be of instrumental value in producing

conditions that allow for SR1 and SR2 to be satisfied. The point is that facts

about epistemic agents, real or hypothetical, play no constitutive role in evidential

relations in the ES account.

This leaves a gap in the error-statistical philosophy of science, however, if we

focus just on the account of evidence as stated in SR1 and SR2. As noted above,

ES aims to provide resources for the investigator to determine which inferences are

justified with regard to data produced as part of a given testing procedure. Unlike

ES’s unrelativized criteria for evidence, however, justification in the sciences does

seem to be relative to an investigator’s epistemic situation. So although Mayo and

Spanos, in their advocacy of post-data use of severity analyses, with the
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accompanying rules of acceptance and rejection have articulated a methodology for

justifying statistical inferences, their account falls short of an epistemology insofar

as it lacks a concept of justification that links the results of applying these methods

with the epistemic situations of investigators. To put it another way, the ES

methodology provides a means for evaluating evidence; the ES theory of evidence

relates evidence to features of the testing situation; but nothing in the ES account

connects the obtaining of an evidential relationship with the question of what is

required for an investigator in a particular epistemic situation to be justified in

drawing a particular conclusion from the experimental data.

Before proceeding, it would be useful to explain what I mean by “epistemic

situation,” as this is meant to be a somewhat richer notion than simply a set of

background beliefs. This term is borrowed from Achinstein (2001), who describes

an epistemic situation as a situation in which “among other things, one knows or

believes that certain propositions are true, one is not in a position to know or

believe that others are, and one knows (or does not know) how to reason from the

former to [a particular] hypothesis” (ibid., 20).

3 Security in the justification of evidence claims

In a nutshell, the problem is this: For an investigator to justify an inference from

x0 to H via test procedure T , or the claim that data x0 from T are evidence for H,

it is not sufficient that H pass a severe test with x0, T . In addition, the investigator

must be able to offer reasons in support of the claim that H does pass a severe test

with x0, T . Justification thus attaches not simply to the data, test, and hypothesis,

but to the inference as an epistemic act of the investigator. Put differently,

evidential relations depend on an epistemic agent only insofar as they depend on

that agent’s decisions to test hypotheses in certain ways. But justification depends

on the agent’s epistemic situation: What does she believe? What does she know?

For scientific claims, justification is directed at an audience of some sort.
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Suppose that a researcher presents a conclusion from data gathered during

research. The decision to present a conclusion indicates that the researcher and her

collaborators are convinced that they are prepared to justify their inference in

response to whatever challenges they might plausibly encounter. Their confidence

will result from their having already posed many such challenges to themselves.

New challenges will emerge from the community of researchers with which they

communicate. Such challenges take many forms, depending on the nature of the

experiment and of the conclusions: Are there biases in the sampling procedure?

Have confounding variables been ruled out? To what extent have alternative

explanations been considered? Are estimates of background reliable? Can the

conclusion be reconciled with the results of other experiments? Have instruments

been adequately shielded, calibrated, and maintained? Is the correct model being

employed? Is the reference class used for determining probabilities appropriate? Is

the test-statistic well-defined and appropriate for the inference drawn? What

policy was followed in deciding to terminate the experiment?

To a large extent, such challenges can be thought of as presenting possible

scenarios in which the experimenters have gone wrong in drawing the conclusions

that they do. But such challenges are not posed arbitrarily. Being logically possible

does not suffice, for example, to constitute a challenge that the experimenter is

responsible for addressing. Rather, both experimenters in anticipating challenges

and their audience in posing them draw upon a body of knowledge in determining

the kinds of challenges that are significant (Staley 2008).

Here I propose a heuristic that might serve to systematize the strategies that

experimenters use in responding to such challenges and allow for a clearer

understanding of the epistemic function of such strategies (see also Staley and

Cobb 2010).

Already we can identify certain features of the problem situation just

described that can guide us in formulating the concept at which we aim. Responses

to the kinds of challenges we have in mind are concerned with scenarios in which
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the claim to have found evidence supporting the conclusion turns out to be

erroneous; they are posed as more than mere logical possibilities, but as scenarios

judged significant by those in a certain kind of epistemic situation, incorporating

relevant disciplinary knowledge; and an appropriate response needs to provide a

basis for concluding that the scenario in question is not actual.

I propose that we think of the practices of justifying an evidence claim as the

securing of that claim against scenarios under which it would be incorrect. Such a

perspective introduces a second notion of error-elimination that is distinct from the

use of a severe error probe. The latter is unrelativized: testing procedures have

their error rates independently of our judgments about them. One eliminates error

by using a procedure that as a matter of fact rarely leads to false conclusions, a

matter that is independent of one’s epistemic situation. The former is relativized:

one eliminates error by showing that, given what one knows (more precisely, given

one’s epistemic situation), the ways in which one might go wrong can be ruled out,

or else make no difference to the evidential conclusion one is drawing. That is to

say, one secures the evidence.

To clarify how this heuristic works, let me offer the following definition:

Definition (security). Suppose that Ω0 is the set of all epistemically possible

scenarios relative to epistemic situation K, and Ω1 ⊆ Ω0. A proposition P is

secure throughout Ω1 relative to K iff for any scenario ω ∈ Ω1, P is true. If P is

secure throughout Ω0 then it is fully secure.

Some explanation of terminology is in order. This definition employs the

notion of epistemic possibility, which can be thought of as the modality employed

in such expressions as “For all I know, there might be a third-generation

leptoquark with a rest of mass of 250 GeV/c2” and “For all I know, I might have

left my sunglasses on the train.” Hintikka, whose (Hintikka 1962) provides the

origins for contemporary discussions, there takes expressions of the form “It is

possible, for all that S knows, that P” to have the same meaning as “It does not
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follow from what S knows that not-P.”5 Borrowing Chalmers’ notion of a scenario

for heuristic purposes, we use that term to refer to what might be intuitively

thought of as a maximally specific way things might be (Chalmers 2011).6 In

practice, no one ever considers scenarios as such, of course, but rather focuses on

salient differences between one scenario and another.

Although security is defined so as to be applicable to any proposition, we are

here concerned with the context of inductive reasoning from data and thus with

the security of propositions expressing an evidence claim, i.e., a claim of the form

‘Data E (resulting from test T ) are evidence for the hypothesis that H.’ Moreover,

I will sometimes apply the term security to inferences. Such usage should always

be understood to be informal and to refer to inductive inferences, such that an

inductive inference from data E to hypothesis H is secure exactly to the extent

that the proposition ‘E is good evidence for H’ is secure.

An evidence claim is thus secure for an agent to the extent that it holds true

across a range of scenarios that are epistemically possible for that agent. Exactly

which scenarios are epistemically possible for a given epistemic agent is opaque,

and not all epistemically possible scenarios are equally relevant, so the

methodologically significant concept turns out to be relative security : how do

investigators make their evidential inferences more secure? And which scenarios are

the ones against which they ought to secure such inferences?

At this point, some readers — particularly those with Bayesian leanings —

might wonder why one does not simply introduce a prior distribution or some such

measure across the class of possible scenarios. Introducing a measure across a range

of possible statistical models is a natural thing to do in a Bayesian framework.

Here I will not pursue such an approach. Primarily, my reason for not considering

a Bayesian approach is that I am here concerned with an error-statistical approach.

An important motivation for advocates of error-statistical approaches is to avoid

assigning probabilities to anything that resists being modeled as the outcome of a

stochastic process of some sort. (In this paper I do not enter into debate over the
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justification for this motivation.) If the measure over scenarios were to be a

probability measure, then it would be conceptually at odds with the approach to

evidence that is here assumed as a starting point. If the measure were not a

probability, it would need to be provided with some other interpretation to be

meaningful. Having no defensible interpretation at hand, I deem it advisable for

now to eschew such a measure entirely.

Furthermore, and more fundamentally, insofar as one might wish to pursue a

Bayesian approach, this should not be seen as a substitute for a security perspective

as here described, but rather as a different evidence-theoretic context in which the

need to address security remains, but the conceptual tools for doing so are different.

An elaboration of this point would take us beyond the scope of this paper, however.

To return to my main argument, then, I contend that numerous scientific

practices already aim at enhancing the security of evidence claims, and that these

can be usefully viewed as instances of two types of strategy: weakening and

strengthening. In weakening, the conclusion of an evidential inference is logically

weakened in such a way as to remain true across a broader range of epistemically

possible scenarios than the original conclusion. Strengthening strategies operate by

adding to knowledge, reducing the overall space of epistemically possible scenarios

so as to eliminate some in which the conclusion of the evidential inference would be

false.

In what follows I survey the pursuit of these two strategies through two

developments within theoretical statistics. The first of these is robust statistics, a

branch of mathematical statistics that has received little attention from

philosophers of science. The second is the program of misspecification testing

(MST) and model respecification advocated by Spanos (1999) and by Mayo and

Spanos (2004) from a standpoint firmly within the error-statistical approach. The

first can be viewed as an example of a weakening strategy, while the latter operates

by strengthening. Viewing both approaches as efforts to address the problem of

securing evidence claims yields insight into the justification of claims regarding the
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evidential support of scientific hypotheses.

4 Security through robust statistics

Robust statistics originates in the insight that many classical statistical procedures

depend upon parametric models that may hold only approximately. One might

hope that when those models are approximately valid, so are the conclusions

drawn. However, it is well established that small departures from such a model can

dramatically affect the performance of statistical measures (Tukey 1960). In

particular, theorists have been concerned with three reasons why a parametric

model might fail to hold exactly (Hampel et al. 1986):

1. Rounding of observations

2. Occurrence of gross errors (bad data entry, instrument malfunction, etc.)

3. Idealization or approximation in the model

As Stephen Stigler notes, “Scientists have been concerned with what we

would call ‘robustness’ – insensitivity of procedures to departures from assumptions

. . . for as long as they have been employing well-defined procedures, perhaps

longer” (Stigler 1973, 872).7 Statisticians continue to use the term ‘robustness’ to

refer broadly to this notion of insensitivity, and there are several theoretical

approaches to the development of frameworks for robust statistical inference.

The theoretical interest of these approaches derives from their methodological

significance: In practice, data analysis often uses estimators or test statistics8 that

do not behave at all like they are supposed to in the presence of even small

violations of the parametric models on which they depend. Put another way, the

reliability properties that are understood to hold for these estimators are an

indicator of the evidential strength of the results of their application only if those

properties really do hold. In many situations in which calculations based on a
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parametric model attribute such reliability properties to an estimator, the model

does not in fact hold exactly, and in many of those situations, the result is that the

attributed reliability properties do not hold even approximately.9

Here I will survey some influential robustness notions that originated in the

1960s in work by Peter Huber (1964) and Frank Hampel (1974, 1971, 1968).

Their approaches have been extended and applied to problems far beyond

simple one-dimensional estimation problems to multi-dimensional and testing

contexts, but I will here discuss some of the early developments on one-dimensional

estimators. My aim is not to survey the state of robust statistical theory, but to

argue that from the outset the theoretical work has been guided by a

methodological concern with the security of statistical conclusions, and that the

theory of robust statistics exemplifies systematic thinking about how to secure

evidence via a weakening strategy.10

4.1 Huber’s minimax approach

In his groundbreaking 1964 paper, Peter Huber introduced a class of estimators

that he called “M -estimators.”11 Huber introduces these as a kind of generalization

of least-squares estimators. To return to our previous example, recall that we

selected a test statistic that employed the sample mean T = x̄ = n−1Σixi as a best

estimator of µ, the “location parameter” of distribution F . This choice of estimator

emerges as the solution to a problem of minimizing the sum of the errors, i.e., the

squares of the differences between the observed values and those that would be

predicted under the hypothesis chosen by that estimator. In other words,

supposing T initially to be some unspecified function of random variables

x1, x2, . . . xn, we seek to choose T so that Σi(xi− T )2 takes its minimum value. The

solution to this particular minimization problem is in fact to define T to be the

sample mean T = 1
n
Σixi.

The class of M-estimators is then introduced as those that solve the more
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general problem of minimizing some function of the errors, i.e., they minimize

Σiρ(xi − T ), for some non-constant function ρ.12 It was well-known that other

statistics besides the mean performed better as location estimators when assumed

exact parametric models failed. Since the choice of the mean as a location

estimator could be defended on the grounds that it solves a particular

minimization problem, perhaps more robust estimators would emerge as solutions

to alternative minimization problems.

Of course, to determine whether this is the case, one needs some means of

evaluating robustness. Huber’s analysis assumes that the unknown underlying

distribution F can be represented in the form of a mixture of a normal distribution

Φ with another, possibly non-normal but symmetric distribution H:

F = (1− ε)Φ + εH. This is sometimes called a “model of indeterminacy.” (Here H

is assumed unknown, but ε is assumed to be known.) In this setting, Huber opts to

use the supremum of the asymptotic variance of an estimator as an indicator of its

robustness.

More specifically: suppose that T is an estimator to be applied to

observations x1, x2, . . . , xn drawn from a family Pε of models that have the form of

F just given, for some value of ε (call the resulting estimate Tn). Then the

asymptotic variance of T at a distribution G ∈Pε is understood to be the

expected value of the squares of the differences between estimator values and the

expected estimator values, evaluated at G, as n→∞, i.e.,

V (T,G) = limn→∞EG[(Tn − E(Tn))2]. Then the most robust M-estimator for a

given family F of distributions would be that which minimizes the maximal

asymptotic variance across Pε. In other words, the most robust M-estimator T0 is

the one that satisfies the condition:

sup
G∈Pε

V (T0, G) = min
T

sup
G∈Pε

V (T,G) (2)

Intuitively, this criterion selects the optimum choice for the “worst case
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scenario” compatible with the model of indeterminacy, in which the observed

random variable is the least informative about the value of the parameter.

4.2 Hampel’s infinitesimal approach

Beginning in his 1968 thesis and in a series of subsequent papers (Hampel 1974,

1971, 1968), Frank Hampel laid the foundations for the “infinitesimal” approach to

robust statistics. Whereas Huber’s approach begins by replacing the usual exact

parametric model with a model of indeterminacy and then seeks to formulate a

generalized minimization problem for that particular model, Hampel’s approach

begins with an exact parametric model and then considers the behavior of

estimators in “neighborhoods” of that model.

First consider a qualitiative definition of robustness, as introduced in Hampel

(1971).13 Suppose that we consider a sequence of estimates Tn = Tn(x1, x2, . . . , xn),

where the xi are independent and identically distributed observations, with

common distribution F . Let LF (Tn) denote the distribution of Tn under F . The

sequence Tn is robust at F = F0 iff, for a suitable distance function d,14 for any

ε > 0, there is a δ > 0, and an n0 > 0, such that for all distributions F and all

n ≥ n0,

d(F0, F ) ≤ δ ⇒ d(LF0(Tn),LF (Tn)) ≤ ε (3)

Intuitively, qualitative robustness requires that an estimator be such that closeness

of the assumed distribution of the observations F0 to their actual distribution F

ensures that the assumed distribution of the estimator is close to its actual

distribution.15

Alongside this qualitative criterion, Hampel introduced the notion of the

influence function (IF) to quantify how much the value of an estimator would

change with the addition of a single new data point with a particular value x.

Hampel described the IF as “essentially the first derivative of an estimator,
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viewed as a functional, at some distribution” (Hampel 1974, 383). More

specifically, supposing an estimator functional T , a probability measure F on a

subset of the real line R, and x ∈ R, the IF is defined as:

IFT,F (x) = lim
ε↓0

T ((1− ε)F + εδx)− T (F )

ε
(4)

where δx denotes the pointmass 1 at x.

In practice, the importance of the influence function lies in derived quantities

that serve as measures of different kinds of robustness. Three of these deserve

mention here, as they are adapted to quite distinct worries involving robustness.

The point I would like to emphasize about these quantities is that they all seek to

capture behaviors of estimators in some kind of generic “worst-case scenario.”

The first (“and most important,” according to Hampel et al. (1986, 87)) of

these derived concepts is the gross-error senstivity γ∗. Suppose that T is an

estimator and F a distribution. Then the gross-error sensitivity for (T, F ) is

defined as:

γ∗(T, F ) ≡ sup
x
|IFT,F (x)|, (5)

and is described by Hampel as a measure of the “worst (approximate) influence

which a small amount of contamination of fixed size can have on the value of the

estimator” (ibid., 87). The gross-error sensitivity is thus useful for understanding

how estimators react to outliers or other “contamination” (Hampel 1974, 387).

The local-shift sensitivity λ∗, defined as:

λ∗(T, F ) ≡ sup
x 6=y
|IFT,F (y)− IFT,F (x)|/|y − x|, (6)

measures the effects of small changes in the values of observations, such as might

result from either rounding or grouping of observations, among other sources. Here

one in effect removes an observation at point x and replaces it with an observation

at a neighboring point y. Local-shift sensitivity is thus a “measure for the worst

(approximate and standardized) effect of ‘wiggling’ ” the data in this way (Hampel

et al. 1986, 88)(Hampel 1974, 389).
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Finally, the rejection point ρ∗, defined as:

ρ∗(T, F ) ≡ inf{r > 0; IFT,F (x) = 0 when |x| > r}, (7)

can be used to describe approaches to estimation that simply reject outliers – the

most time-honored approach to robust estimation. The rejection point can be

thought of as the smallest absolute value that an observation might have that would

lead to its being rejected outright, thus having no influence on the value of the

estimate. If data are never to be rejected, regardless of their value, then ρ∗ =∞.

We can now see how robust statistics responds to its motivating problem by

giving investigators tools for evaluating how well statistical conclusions drawn with

a particular claimed reliability hold up in the face of particular kinds of departures

from a given model. Or, to put it in terms used in the definition of security:

robustness notions in statistics aim to allow the investigator to determine and

employ an estimator that would allow her evidence claims to remain valid for

various ways in which, for all she knows, her initial assumptions might be wrong.

The general approach that the Huber/Hampel framework takes to enhancing

security is a weakening strategy: the security of the inference is enhanced by

weakening its conclusion. This is reflected in a comparison of the variance of

different estimators. The variance of the sample mean, which has generally poor

robustness characteristics, is easily shown to be smaller than that of other more

robust estimators at the Normal distribution. The sample mean, thus, is a more

efficient estimator than its more robust counterparts, allowing one to draw, ceteris

paribus, a stronger conclusion from a given body of data (see Hampel 1974,

esp. the table on p. 392 and accompanying text).

This last advantage is of course illusory if in fact the process generating data

is not adequately modeled using the Normal distribution. A more robust estimator

is thus a more secure choice for the inquirer who has assumed a statistical model

based on the Normal distribution, although for all she knows the process might not

be correctly described by a Normal distribution. The price paid is that the less
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narrowly distributed, but more robust estimators will in general lead to less precise

estimates, making less efficient use of the information in the data than one would if

the Normal model were valid and one used the mean as an estimator. The strategy

is clearly a weakening one in the sense that one draws a weaker conclusion (an

estimate that results in a larger interval for the same confidence level), relying on

what is implicitly a “compound” or disjunctive premise: the conclusion is sound so

long as either the assumed model or an alternative that is “close” to it (in a sense

defined by the relevant robustness measure) is correct. The contrast between

weakening and strengthening will emerge more clearly as we turn in the next

section to an alternative strengthening strategy: rather than draw a weaker

conclusion that remains sound across a range of models of epistemically possible

scenarios, attempt to determine a statistically adequate model, and then choose

the optimal inferential strategy for that model.

5 Security through misspecification testing

In this section I will discuss an alternative approach to model criticism.

Misspecification testing (MST) constitutes a systematic method for probing

assumed statistical models for errors of specification that would result in statistical

inadequacy and respecifying as necessary. The method has been advocated by

defenders of ES (Mayo and Spanos 2004, Spanos 1999). Here I will present just

enough of an overview of the method to substantiate the contrast I wish to draw

with robustness approaches to model criticism: Both robust statistics and MST

address the issue of securing statistical evidence. The former does so through a

weakening strategy while the latter does it through a strengthening strategy.

By its nature, MST calls for testing outside of the original parametric model.

Indeed, because MST aims to consider all possible distributions as alternatives to

that in the assumed model, it cannot proceed on a fully parametric basis at all. As

Spanos notes, “the implicit maintained hypothesis [is] P, the set of all possible
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probability models,” including nonparametric models (ibid., 733, emphasis in

original). This poses a difficulty, however. One might attempt to carry out a test of

the assumed model by treating it as a null that can be specified parametrically,

thus defining a subset Bθ ⊂P, but given the impossibility of parameterizing the

alternative P −Bθ, one seems to be forced into testing in an ad hoc and local

manner, with no framework for evaluating the power of such tests. The situation

seems to demand a Fisherian approach16 to testing in which the aim is really to

subject the null hypothesis to testing, but without the specification of an

alternative hypothesis (apart from the implicit alternative that the true

distribution lies within P −Bθ), thus leading one only to conclusions about how

compatible the data are with the null. Yet one would also like to be able to

systematize one’s search for possible departures from the assumed model in a way

that allows one to judge sensitivity of the test to such departures.

Spanos proposes to solve this difficulty by strategically employing a series of

pseudo-Neyman-Pearson tests of the assumed model that situate that model within

an “encompassing” statistical model, not as a true Neyman-Pearson test, but as a

provisional setting for a kind of operationalization of testing unsupported in a

Fisherian framework. In other words, rather than ad hoc scrutiny of single

assumptions, Spanos’s MST approach uses techniques of data analysis (largely

graphical) to look for “specific directions of possible departures from the

assumptions of the postulated model” (ibid., 763). Based on such information, one

then postulates a new model that includes the original model as a special (null)

case, and tests within the enlarged model for departures from that null. This

allows for the full parametrization of the misspecification test, as required in

Neyman-Pearson approaches. Nonetheless, Spanos insists, these are not true

Neyman-Pearson tests because the context demands explicit openness to the

possibility that the true model lies outside, not only the original postulated model,

but also outside the encompassing model. Moreover, the “basic objective” of MST

is that of Fisherian testing: “The significance level α, interpreted in terms of what
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happens in the long run when the experiment is repeated a large number of times,

is irrelevant because the question the modeler poses concerns the particular sample

realization” (ibid., 764).

Recall the simple Normal model of the example in section two of this paper.

That model incorporated assumptions regarding distribution, dependence and

heterogeneity. The aim of MST would be to use the data in hand to test these

assumptions against their alternatives : that X1, . . . , Xn are not Normally

distributed, that some of them are probabilistically dependent on others, that they

are not all identically distributed.

In the present case, then, the MST approach of specifying an encompassing

statistical model that includes the original postulated model as a special case might

lead one to replace the Independence assumption with an assumption that allows

for Markov dependence. Suppose that we use notation f(x;θ) to denote a density

function of random variable X with parameters θ, that T is the “index set” used to

represent the dimension according to which the data are ordered, and that R is the

Borel σ-field generated by the real numbers R. Whereas the initial independence

assumption regarding {X} could be expressed in terms of the identity

f(x1, x2, . . . , xT ;φ) =
T∏
i=1

ft(xt;ψt) for all t ∈ T,

and all x := (x1, . . . , xT ) ∈ R, (8)

our new assumption would be that of Markov dependence:

fk(xk|xk−1, xk−2, . . . , x1;φk) = fk(xk|xk−1;ψk), k = 2, 3, . . . . (9)

Consistency then requires us also to replace the original heterogeneity assumption

of identical distribution with that of second-order stationarity. We then have the

following statistical generating model :

Xt = α0 + α1Xt−1 + ut, t ∈ T (10)
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(here ut is the error term).

These modifications amount to the specification of an encompassing model

that allows one to test the hypothesis H0: that (X1, X2, . . . , XT ) are independent

against the alternative H1: that they are Markov dependent. In parametric terms

this is a matter of testing H0 : α1 = 0 against H1 : α1 6= 0.17

This brings us naturally to the question of what to do with the results of such

tests. Although the mathematical apparatus is that of the Neyman-Pearson

approach, the aims and interpretation of the tests are Fisherian, and some care is

needed in the interpretation of test outcomes.

A chief distinction between MST and NP testing is the role played by the

statistical model. For an NP test, the statistical model must be statistically

adequate for it to guide the interpretation of test outcomes. It is this feature that

allows one to draw positive evidential conclusions both in the case where the null

hypothesis is accepted and in the case where it is rejected, with regard to those

hypotheses that are tested with high severity (see Mayo and Spanos 2006). But the

role of the statistical model in MST is different, as it serves only to allow for the

development of tests that potentially have high power in testing the null model

against alternatives in a particular direction. In our example, we may have a t-test

that tests the null model postulating independence with potentially high power

against alternatives postulating some degree of Markov dependence. This high

power is potential in the sense that our determination of the power of the test

relies on the encompassing model, which in Fisherian mode we allow may be false.

Suppose, then, that the null model passes this test. We then can say that, as

far as the direction of departure from the null that is tested with high power is

concerned, we have evidence that the null model is not in error by more than a

magnitude to which the test is sensitive. This supports at least the provisional and

approximate endorsement of the power assessments of the misspecification test.

Our next step may be to consider other possible directions of departure, by turning

to our assumptions regarding dependence or heterogeneity, for example, or by
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looking for higher order dependence. If the null model passes such a series of

misspecification tests, then, insofar as we believe that we have ruled out all of the

relevant ways in which that model fails, we may also believe our power calculations

for the misspecification tests used, because the null model is contained by all of its

encompassing models. We may in fact be in a position to say that we have evidence

for the hypothesis for which we claimed evidence in the original inference and for

the statistical model on which that evidence claim depended. In this way, we have

secured our original evidence claim by strengthening the support for its premises.

Things look rather different if the null model fails this misspecification test.

In an NP test, data that leads to the rejection of the null hypothesis can potentially

be interpreted as evidence supporting an alternative. In misspecification testing,

this is not the case. In the absence of support for the null model, the adequacy of

the encompassing model is also called into question. Thus, rejecting the null in a

misspecification test that was designed to have power against alternatives in a

particular direction “simply points the direction one should search for a better

model” (Spanos, personal communication). Such information is useful for purposes

of respecifying the assumed model. The methodology of respecification goes beyond

the scope of the present paper. For our purposes it suffices to note that any such

respecified model will itself need to be tested before it can be securely employed.

6 Conclusion

Given that both robust statistics and mis-specification testing serve the same

purpose, it is natural to ask which approach is to be preferred in the pursuit of

that aim. Answering that question is not the aim of the present paper. Prima

facie, MST, precisely because it is not a weakening strategy, enjoys the advantage

of greater efficiency. No satisfactory comparison could be made in the absence of

considerations of computational costs, however. The comparison here is meant only

to draw attention to two points: first, that both approaches can be viewed as
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pursuing the same aim of securing evidence claims; second, that by examining how

the approaches differ in their pursuit of security, we can see that they exemplify the

two different general strategies of securing evidence here discussed.18

To see the constrast between the two strategies, consider the situation of the

researcher who seeks to draw inferences from a body of data using some statistical

model. Supposing an initial model to be postulated, perhaps on the basis of a

combination of plausibility and convenience considerations, the researcher is then

faced with the problem that, for all she knows, that model might well be wrong.

The Huber/Hampel approach would have her consider a range of epistemically

possible error scenarios in which the postulated model is wrong, and then seek an

estimator or test statistic that would allow her to draw weaker evidential

conclusions that would remain sound across that range, as opposed to the stronger

(but possibly false) conclusions that could be drawn using a procedure that is

optimal for the postulated model. The MST approach, by contrast, would advise

the researcher to subject the postulated model to a series of tests against

epistemically possible errors in particular directions. Such testing would lead either

to the validation of the postulated model, or to the respecification of the posulated

model, whereupon the MST procedure would be reiterated, until at length a model

would be specified that would withstand and be validated by such testing. By thus

strengthening the support for the model employed, one would be in a position to

derive the strongest possible conclusion from the data compatible with one’s own

reliability standards. Of course, there is nothing to prevent the researcher from

drawing upon both strategies, such as by applying robustness considerations to a

model that has been subjected to misspecification testing.

However one views the relative merits of Huber/Hampel robustness theory vs.

the MST tesing approach, it is clear that the context for both belongs to the stage

of inquiry in which one is engaged, not in the use of a reliable inferential process,

but in the scrutiny, relative to one’s epistemic situation, of the possible modes of

error for the assessment of such a process’s reliability. For an advocate of the ES
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theory of evidence, which employs reliability as the core objective and unrelativized

notion behind the evidential relationship, either approach could be used to enhance

security as a mode of evidential assessment that is relativized to epistemic

situation. Thus, both the application of robustness theory and the MST

methodology belong to that stage of inquiry that is sometimes referred to as

“model criticism,” which can be described in terms of a shift of perspective on the

part of the investigator from “tentative sponsor to tentative critic” (Box and Tiao

1973, 8). In neither approach discussed here is model criticism carried out blindly,

but rather rests upon a prior reflection on what is and is not known about the

possible sources and modes of error in an initial set of assumptions.
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Notes

1The precise sense, however, in which objectivity can be predicated of the

ES account, however, is a subtle and disputed issue. Suffice it here to note

two points. First, the error probabilities that figure into the application of

criteria SR1 and SR2 are, as will be discussed, predicated on a statistical

model on which the statistical inference is premised. Much of the present

paper is concerned with statistical procedures for coping with the possible

inadequacy of these premises for the kind of inference that the investigtor

seeks to draw. Second, although the very fact that such premises are

susceptible to the kind of criticism discussed here would seem to indicate

that some notion of objectivity is applicable, the exact sense in which such

a notion applies is not a simple matter of “correspondence to the facts.”

As will be seen, for example, the procedure to be here discussed for testing

statistical models does not test for the truth of their defining assumptions

but for their statistical adequacy (see section five). Here I simply note

these issues, as the main concern of this paper is not objectivity per se

(granting that the notion does play a role in the discussion), but rather

the justification of statisitcal inferences.

2In epistemology, warrant is sometimes used to denote that which, in ad-

dition to truth, qualifies a belief as knowledge. For our purposes, it will

suffice to regard the use of the term here as synonymous with justification.

3Mayo has in fact argued that Neyman and Pearson themselves should

not be understood as having consistently advocated the orthodox N-P

approach. Pearson distanced himself from the behavioristic interpreta-

tion typically associated with orthodox N-P (Mayo 1996, 1992, Pearson

1962), and Neyman advocated post-data power analyses similar to those
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employed in ES (see, e.g., Mayo and Spanos 2006, Neyman 1955).

4Although degrees of severity as here deployed look mathematically like or-

dinary “p-values” as used in Fisherian significance testing, their method-

ological use in a post-data meta-statistical scrutiny distinguishes them

from p-values.

5Just how to formulate the semantics of such statements is, however, con-

tested (see, e.g., Kratzer 1977, DeRose 1991, Chalmers 2011). To note

one difficulty for Hintikka’s original understanding, consider the status

of mathematical theorems. Arguably, if Goldbach’s conjecture is true,

then it does follow from what I know (though I do not realize this), if

I know the axioms of number theory. Yet it also seems correct to say

that it is possible, for all I know, that Goldbach’s conjecture is false, even

if I do know the axioms of number theory. More recently, contextualist

and relativist approaches have been formulated (DeRose 1991, MacFar-

lane 2011). One reason for relativizing security to epistemic situations

as characterized above, rather than to, e.g., sets of beliefs is that such

approaches to modal semantics make factors beyond simply an agent’s

beliefs or knowledge relevant to the status of an epistemic modal propo-

sition. Relativizing to epistemic situations makes the account sufficiently

flexible to be compatible with such varied approaches to modal semantics.

6As suggested by an anonymous referee, one might wish to formulate the

idea of security in terms of ‘possible worlds’ (as used by Lewis and many

others) or ’state descriptions’ (as used by Carnap). No difficulty seems

to arise on either approach, provided one keeps firmly in view that the

modality at issue is neither subjunctive nor logical, but epistemic in na-

ture.
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7In the history of statistics, Stigler traces the first mathematical contribu-

tions to robust estimation back to Laplace, but focuses on the work of

Simon Newcomb and of P. J. Daniell as exemplars of early work on robust

estimation that was both clear and rigorous.

8Henceforth, in making general points about robustness theory, I shall

refer only to estimators. It must be borne in mind that robustness theory

has been developed for testing as well as estimation and all the same

general points obtain in that context, but with attention shifted from the

properties of estimators to those of test statistics.

9Jan Magnus and his collaborators have pursued a distinct but related ap-

proach to this problem that is noteworthy but not explored in the present

paper. Magnus advocates a model-perturbation approach to sensitivity

analysis that studies “the effect of small changes in model assumptions

on an estimator of a parameter of interest” (see, e.g., Magnus and Vasnev

2007, Magnus 2007).

10Here I discuss these developments in the context of frequentist statistics in

the Neyman–Pearson tradition. However, robustness theory is also appli-

cable in Bayesian settings and likelihood-based approaches (Hampel et al.

1986, 52–56). That this is so provides additional support to the argument

above regarding the relevance of security for statistical approaches other

than ES.

11Cf. Huber (1964). The discussion that follows also owes much to Hampel

et al. (1986, esp. 36–39, 172–78).

12As Huber notes, this class turns out to include as special cases the sample

mean (ρ(t) = t2), the sample median (ρ(t) =| t |), and all maximum

likelihood estimators (ρ(t) = −logf(t), where f is the assumed density of
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the distribution).

13The following discussion owes much to (Huber 1981). Many technical

details are omitted, as the aim is to convey an intuitive notion that only

approximates the more rigorous mathematical approach taken by Hampel.

14Just what makes a function d “suitable” to be a distance function in

this context, beyond some obvious but underdetermining constraints, is

not perfectly clear. See Huber 1981, 25–34, for some functions that have

received the attention of theorists.

15Note that this notion only serves to characterize robustness with respect to

assumptions about the distribution, not about dependence or heterogene-

ity, since the definition assumes the data are distributed independently

and identically.

16Fisher’s approach contrasts with the N-P approach by eschewing teh spec-

ification of alternative hypotheses, emphasizing instead the effort to test

the null hypothesis itself. Thus, when the null is rejected, no alternative

is accepted, but rather the statistical signficance with which the null is

rejected is reported. Fisherian testing also differs from a behaviorist con-

strual of N-P insofar as its aim is not to control the cost of erroneous

decisions, but to determine how well the observations agree with a partic-

ular hypothesis (see, e.g., Fisher 1949).

17The model in question is the Normal autoregressive model, and the opti-

mal test is a t-test; see Spanos (1999, 757–60) for details.

18Another statistical methodology that can be put to use in securing infer-

ences not discussed here is the use of nonparametric techniques, discussed

recently by Jan Sprenger (2010).
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