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Abstract 

Experimenters sometimes insist that it is unwise to examine data before determining 

how to analyze them, as it creates the potential for biased results. I explore the rationale 

behind this methodological guideline from the standpoint of an error statistical theory of 

evidence, and I discuss a method of evaluating evidence in some contexts when this 

predesignation rule has been violated. I illustrate the problem of potential bias, and the 

method by which it may be addressed, with an example from the search for the top quark. 

A point in favor of the error statistical theory is its ability, demonstrated here, to explicate 

such methodological problems and suggest solutions, within the framework of an 

objective theory of evidence. 
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1. Introduction 

Experimenters sometimes maintain that one should avoid looking at one’s data prior 

to deciding how to analyze those data. This “no peeking” or predesignation rule is 

probably broken fairly often in practice, but many experimenters will at least pay it lip 

service. The question for philosophers of science is whether the rule has a sound 

epistemic rationale. If there is such a rationale, then a question of both philosophical and 

practical interest is whether experimenters can take steps, when the rule has already been 

broken, to retain some degree of accuracy and reliability in their assessment of the 

evidential import of their findings.  

In this essay, I will scrutinize the predesignation rule, drawing upon the conceptual 

resources of the error statistical theory of evidence, according to which an experimental 

outcome constitutes evidence for a hypothesis only if the hypothesis passes a severe test 

with that experimental outcome (Mayo 1996). I will argue that the predesignation rule 

does have a sound rationale to support it in certain contexts, as it is a useful means for 

ruling out certain kinds of error. The predesignation rule thus assists in the accurate 

evaluation of evidence by helping to create conditions in which the adequacy of a 

probability model of the experiment can be ascertained, a task central to establishing 

experimental evidence on the error statistical account. To illustrate these points, I will 

examine an episode in the recent history of particle physics that demonstrates how a 

violation of the predesignation rule can give rise to concerns about errors due to a 

particular form of bias. The episode in question is the 1994 discovery of the first evidence 

for the existence of the top quark by the Collider Detector at Fermilab (CDF) 
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Collaboration, and the particular form of bias is known among particle physicists as 

“tuning on the signal.” 

In tuning on the signal, experimenters choose data-selection criteria in such a way 

as to enhance the appearance of a significant experimental effect, creating conditions in 

which it is difficult to ascertain the error probabilities for the experiment at hand. I will 

argue that predesignation helps to ensure that tuning on the signal does not occur. 

Nevertheless, the predesignation rule is not an absolute requirement. Even when 

experimenters have failed to predesignate in contexts in which predesignation is most 

useful, post-test reasoning can in principle serve to rule out the same kinds of errors that 

predesignation aims to eliminate.  

Furthermore, even in circumstances in which post-test considerations are 

insufficient to rule out such forms of bias as tuning on the signal, methods drawing upon 

the basic concepts of error statistical inference can sometimes help to establish evidence 

by showing that the extent of bias introduced was insignificant. Such a rescue of evidence 

from poor pre-test planning can be achieved by carrying out a test of the sensitivity of 

one’s result to changes in the specification of the experimental test—a procedure that I 

regard as an exercise in counterfactual error statistics. I will illustrate the usefulness of 

such counterfactual error statistical analysis by means of an application to the data CDF 

used in claiming the discovery of evidence for the top quark. 

I will conclude this essay with some brief comments on the implications of the 

predesignation rule for the putatively objective status of error statistical evidence. Given 

that the error statistical theory purports to give an objective account of evidence, it will 

strike some as odd that what the experimenter knows, and when she knows it, might be 
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relevant to whether, or the degree to which, given data are evidence for a certain 

hypothesis. The error statistical theory’s objectivity claim would seem to require that 

questions of evidential relevance concern what is true, independently of what the 

investigator knows or believes. Hence, why the timing and extent of an experimenter’s 

knowledge of the data should make any difference to the assessment of evidence requires 

explanation. I argue that the relevance of such facts about experimenters to the 

assessment of evidence is simply a consequence of the causal connections between 

experimenters and experimental data. That these causal connections have potential 

implications for evidential relations in virtue of their potential implications for the error 

probabilities of testing procedures does not make either error probabilities or evidential 

relationships any less objective. 

 

2. Predesignation, Novelty, and Metamethodological Critique 

Many philosophers of science have advocated the notion that facts offer stronger 

support for a hypothesis when the invention of the hypothesis precedes the discovery of 

those facts (or when the facts have not been used in the construction of the hypothesis). 

Advocates of this “novelty requirement” have included such luminaries as Whewell and 

Lakatos. More recently, the novelty requirement has been refined and developed by 

several philosophers, especially those emerging from the Popper/Lakatos tradition (see, 

e.g., Zahar 1973; Musgrave 1974; Worrall 1985; Worrall 1989).1 The ability of some 

scientific theories to generate successful novel predictions has even been taken as the 

basis of an argument for scientific realism (Leplin 1997). Whewell’s claims for novelty 

ran famously into the opposition of John Stuart Mill. Novelty considerations were 
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dismissed as irrelevant by logical positivists such as Schlick (quoted in Worrall 1985, 

305) and more recently have been held to be incompatible with objective concepts of 

evidence by Achinstein (1995) and Snyder (1994).  

In the context of statistical testing, the problem takes a specific form, which will be 

the focus of this essay. Assuming that the primary hypothesis of interest in a given 

experimental inquiry has already been articulated, the question remains how one will test 

that hypothesis. A rule of “folk statistics” (Mayo 1996, 295) advocates that one ought to 

predesignate the parameters of one’s test procedure in advance of any examination of the 

data. Such a requirement can be regarded as a variant of the novelty requirement. It 

should be pointed out, however, that this “no peeking” rule in statistical testing calls for 

the predesignation, not just of a substantive scientific hypothesis, but of a testing 

procedure as well. Consequently, the predesignation rule for statistical tests may be 

violated in some cases where it seems that the novelty requirement, in the versions 

typically discussed by philosophers, has been met. Nevertheless, the statistical 

predesignation rule can be conceptualized in terms of the novelty requirement in this 

sense: the no peeking rule requires that one specify models of the hypothesis and of the 

experiment prior to any knowledge of the data themselves (alternatively, the rule might 

be construed to require that knowledge of the data not be used in the construction of such 

a model).2 

As a general requirement, the predesignation rule requires the specification of all 

features of the test procedure that will make a difference to the probabilistic model of the 

experiment (the sampling distribution in statistical parlance). This includes the definition 

of the quantity to be measured (the test statistic), the criteria for data selection (the cuts), 
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and the size of the sample (the stopping rule). The importance of predesignating such 

features has been contested, particularly from the standpoint of the likelihood principle 

advocated by Bayesians and likelihood theorists.3 My aim in the present essay is not to 

debate the likelihood principle or its implications. Instead, I intend to follow to some 

degree the path laid out by previous defenders of predesignation in statistical inference, 

such as Giere (1969), Armitage and Barnard (see the discussion in Savage 1962), and 

Mayo (1996, esp. ch. 9), who have defended the rule not as a methodological absolute but 

as a rule the violation of which can lead to erroneous conclusions in certain 

circumstances. However, I wish to focus in particular on the requirement of 

predesignating the criteria for data selection.4 I seek to explicate precisely why 

predesignation facilitates an error statistical evaluation of evidence, when predesignation 

is optional, and what can be done to evaluate evidence in the face of a failure to 

predesignate. 

What follows thus constitutes an exercise in metamethodological criticism from 

within the error statistical theory of evidence. In engaging in such criticism, I have two 

goals: (1) to demonstrate the ability of the error statistical theory to explicate in a 

coherent way a common methodological intuition, to clarify why that intuition seems 

reasonable and to identify its limitations; (2) to indicate the methodological consequences 

of adopting the error statistical theory of evidence.  

The first goal is important insofar as a necessary condition for any adequate theory 

of evidence is that it must yield coherent explications and criticisms of methodological 

intuitions. Only a theory that is able to meet this standard can serve as a basis for solving 

problems encountered in experimental practice. Of course, if other theories are able to do 
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as well as the error statistical theory at this task, then my argument will provide no reason 

to prefer the error statistical theory, but only to show that one ought not eliminate it on 

this score. Since I do not attempt a comparison with other approaches here, I will have to 

content myself with the weaker claim that the error statistical theory satisfies a necessary 

condition of adequacy with respect to this particular methodological problem. I leave it to 

others to demonstrate the ability of Bayesian or likelihood-based approaches, for 

example, to explicate the problem here considered, if that is indeed possible.  

This brings me to the second goal. One point of the present essay is that adopting 

the error statistical theory of evidence has consequences for experimental practice. As 

Deborah Mayo and Michael Kruse have recently shown with respect to the debate over 

stopping rules, differing principles of inference do have different methodological 

consequences (Mayo and Kruse 2000).5  One can thus judge theories of evidence by their 

consequences for scientific practice. Does adopting the theory at hand yield practices that 

help to achieve one’s scientific aims? This question must be addressed if philosophers are 

ever to remedy their past failure to articulate theories of evidence that are relevant for 

scientists’ concerns (cf. Achinstein 2000; 2001, ch. 1). 

 

3. The Error Statistical Theory of Evidence  

Briefly, the core evidential principles of the error statistical theory of evidence can 

be expressed in terms of the Severity Requirement (SR) and the Severity Criterion (SC) 

(Mayo 1996, especially 178–187): 

SR: An experimental result E constitutes evidence in support of a hypothesis H 

just to the extent that: 
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 (1) E fits H, and 

 (2) H passes a severe test with E.  

We can further specify the severe test requirement (SR2) by means of the Severity 

Criterion: 

SC: A hypothesis H passes a severe test T with outcome E just in case the 

probability of H passing T with an outcome such as E (i.e., one that fits H as well 

as E does), given that H is false, is very low.  

These principles entail that in order to determine whether a given experimental 

outcome E is evidence for a given hypothesis H, one needs to address what we might call 

the Severity Question (SQ). 

SQ: How often would a result such as this occur, in an experiment such as this, 

assuming that the hypothesis is false?  

From SR and SC, it follows that if the answer to SQ is that such a result would 

occur fairly often, then the hypothesis has not passed a severe test, and the result does not 

constitute evidence for that hypothesis. 

 

4. Error Statistics at Work: The Search for the Top Quark 

In the early 1990s, the 450 physicists of the Collider Detector at Fermilab (CDF) 

collaboration sought evidence for the existence of the top quark. Of the six kinds of quark 

postulated in the “standard model” of the elementary particles and forces, the top quark 

was the last to be experimentally confirmed. The experiment itself was remarkably 

complex, and I will discuss only a small fragment of the work that went into 

substantiating the first claim of evidence for the top quark’s existence (published as Abe 
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et al. 1994). 

CDF examined the products of proton-antiproton collisions with an elaborate 

cylindrical detector. If the top quark did exist, then every once in a while one of several 

signatures would show up in their data—indications that a top quark had been produced 

and then decayed into other particles. One such signature would involve a high 

transverse-momentum lepton (either an electron or a muon), three or more high energy 

jets of strongly-interacting hadrons, and another electron or muon with low transverse 

momentum—a soft lepton. The search for events bearing this signature was called soft 

lepton tagging or SLT. 

“High momentum,” “low momentum,” and the like are vague terms. CDF sought to 

make them precise in order to distinguish real top quark decays (signal events) from 

background processes that might mimic this top quark signature (background events). 

This problem amounted to choosing the threshold values (called cuts) for various particle 

measurements in order for an event to constitute a candidate event. Any collision event 

that satisfied the cuts would qualify as a candidate event—not necessarily a top quark 

decay event, but a candidate for being one. Having chosen a set of cuts, CDF could then 

tackle the search for the top quark by collecting data, and then trying to determine, for the 

amount of data they had collected, how many candidate events they expected to find from 

background sources alone. The existence of the top quark would manifest itself as a 

significant excess in the number of candidate events beyond the expected background. 

What constitutes a significant excess? Quantitative error statistics can help address 

this question. CDF had determined for themselves a null hypothesis:  

H:  This data sample has been drawn from a population of proton-antiproton 
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collision events that is free of top quark production. 

They sought to test this against an alternative hypothesis: 

J:  This data sample has been drawn from a population of proton-antiproton 

collision events that contains some top quark–producing events. 

For the purpose of such a test, they defined a test statistic: 

 X ≡ the number of candidate events in the present data sample 

With these elements in place, they produced a null probability distribution for X. This 

distribution gives the probability of getting various values for X, assuming that H is true, 

for the particular experiment being performed. Establishing just what the null distribution 

should be required the development of a model of what their experimental outcome 

would be in the absence of the top quark—an estimate of the expected background. 

CDF’s background estimate was the result of the subtlest of arguments based on a 

combination of calculations from theoretical models and studies of large control samples 

collected during the experiment itself. In this way, CDF took advantage of existing 

knowledge of background processes, while also taking into account the possibility of 

contributions to the background from processes that were not yet well understood. The 

details of such calculations will not concern us here.  

After collecting data for about a year and half from 1992 to 1993, CDF had data on 

approximately 16 million collision events. Among these, they found seven SLT candidate 

events. Based on the null probability distribution that they had determined, they estimated 

that they should expect on average approximately three SLT candidate events from 

background. 

Given that outcome, they then sought to calculate the significance level of their 
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results, i.e., the probability of getting seven or more candidate events, assuming the null 

hypothesis H. They found that probability to be 0.041. In other words, were there no top 

quarks, and were they to repeat their experiment infinitely many times, they would get 

seven or more candidate events about 4% of the time. 

The usefulness of such a statistical significance calculation, from the perspective of 

the error statistical theory, should be clear. The severity question SQ asks how often a 

result such as the one actually obtained would be found, assuming the hypothesis in 

question to be false. If all goes well, significance calculations enable that question to be 

addressed quantitatively. 

 

5. Bias, Tuning on the Signal, and the Reference Class 

In experiments, things do not always go well. 

The SLT search was first used by CDF in a data-collecting period from 1988 to 

1989. During that period, no evidence for the top quark was found. However, having 

failed to find the top quark, CDF was able to establish a minimum value for its mass (Abe 

et al. 1992), since theory dictated that the lower the top quark’s mass, the more frequently 

the particle would be produced, and the more quickly it would show up in their data. The 

absence of any evidence of the top ruled out a low mass.  

As CDF prepared to begin a new round of data-collection in 1992, some discussed 

the possibility of changing some of the cuts used in the SLT search. Since an SLT 

candidate event should have a low momentum lepton, a choice had to be made as to 

where the minimum and maximum momentum cuts should be placed for these soft 

leptons. The minimum value had been set at 2 GeV/c, but for a more massive top quark, 
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some argued, the cut should be moved to 4 GeV/c. Leptons with momentum in the range 

from 2–4 GeV/c were, they argued, much more likely to come from background than 

from top quark decays, if the top quark was fairly massive. This argument was not 

absolutely conclusive, however, and the two physicists chiefly responsible for the SLT 

search algorithm at the time thought they had good reasons to keep the soft lepton 

momentum cut at 2 GeV/c—not least in order to maintain continuity with the earlier 

search.  

Two facts about the CDF collaboration at the time of these events are worth noting 

in the context of our discussion of the “no peeking” rule. First, CDF did not restrict 

collaboration members from examining new data as it became available. Second, the two 

physicists who were then working on the SLT algorithm worked very independently from 

the rest of the group, and largely kept their deliberations to themselves. 

CDF eventually reported the SLT results with the soft lepton cut at 2 GeV/c. 

However, some physicists in the collaboration expressed uncertainty about the choice of 

soft lepton cut, with respect to both the timing of the decision and the way in which the 

value of 2 GeV/c was chosen. Three of the seven candidate events found by the SLT 

analysis were excluded if the analysis were done with the cut moved up to 4 GeV/c, 

yielding an apparently less significant result. Some collaboration members worried that 

the apparent significance of the SLT results was an artifact of a manipulation (whether 

intentionally deceitful or not), that created the appearance of a genuine effect out of mere 

background. Particle physicists consider such manipulation a problem sufficiently serious 

to merit a special name. They call it “tuning on the signal.”6 In this case, the availability 

of data for scrutiny entailed that such manipulation was possible, and the relatively 
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private nature of the SLT development process made it easy for other physicists to worry 

about it. 

Consider the officially quoted significance level for CDF’s SLT search: 0.041. 

Based on the assumptions CDF was making, if the null hypothesis were true, and one 

were to repeat infinitely many times an experiment using the same detector, using the 

same cuts, collecting the same amount of data, and so on, one would get seven candidate 

events or more only 4.1% of the time.7  

However, if we know that the cuts used in this case were chosen in such a way as to 

exaggerate the apparent significance of the results, then we have statistically relevant 

information about the experimental procedure used to reach these results. Specifically, 

the procedure followed—including now the procedure for choosing the cuts—has 

different error characteristics than the procedure on which CDF based their significance 

estimate of 0.041. That estimate was based on the specification of a reference class, with 

respect to which the probability is calculated. The reference class used in calculating a 

significance level is a hypothetical population of repetitions of a certain experiment. The 

appropriateness of a particular reference class is therefore in part a matter of the testing 

procedure that has in fact been used. If experimenters know that they have tuned their 

cuts on the signal, then a reference class that would otherwise be appropriate would be 

the wrong reference class for calculating that probability. For example, if it were known 

that the SLT cuts had been chosen specifically in order to increase the value of the test 

statistic, and yet the statistical significance calculation were performed without taking 

this information into account, then the reference class chosen for purposes of that 

statistical assessment would not be correct.  
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Under such circumstances, the reference class used for calculating significance 

would not be appropriate because it would not be homogeneous with respect to the 

experimental outcome. The reference class would fail to be homogeneous because it 

could be further partitioned according to a factor statistically relevant to the outcome. If 

the cuts had been tuned on the signal, then the method of selecting cuts would be 

statistically relevant. 

Although Salmon’s concept of homogeneity, which he formulates for use in his 

theory of statistical explanation (Salmon 1984), might seem promising here, it is too 

stringent for use in cases of experimental inference. In Salmon’s account, a reference 

class is homogeneous with respect to an explanandum partition just in case that class 

cannot be partitioned in any manner whatsoever relevant to the occurrence of any 

member of the explanandum partition. But in an experiment to test a hypothesis, the fact 

under investigation (whether or not top quarks are being produced in the generated 

collisions, for example) would constitute such a relevant (but presumably unknown) 

factor. Consequently, in precisely those cases where experimental inquiry is needed, such 

a requirement could not in principle be known to be satisfied. For a fully objective error 

statistical theory of evidence, however, one feature of Salmon’s concept should be 

retained: it does not suffice to satisfy the homogeneity requirement that one be unaware 

of any statistically relevant partition. The challenge is thus to articulate a notion of 

homogeneity that is objective, rather than epistemic, yet is suitable for purposes of 

statistical inference. 

Such a notion remains to be fully specified. I can explicate the concept only in part 

here, and with less precision than I would like. A step towards a full explication is to 
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stipulate the following necessary condition: A reference class A used in calculating the 

probability of an outcome E is homogenous with respect to E only if there is no factor B, 

under the control of the experimenter and present in that instance of the experiment that 

resulted in E, such that p(E|A) ≠ p(E|A&B). 

In calculating a significance level, one first supposes that the null hypothesis is true. 

One then asks, suppose I were to perform an infinite sequence of repetitions of this 

experiment, how often would I get such a result as this? A great deal turns, however, on 

how this experiment is specified. Consider two possible sequences of experiments. 

Sequence A consists of repetitions of the SLT top quark search, each of which 

collects the same amount of data using an experimental setup identical to that used by 

CDF. In each member of A, the experimenters have a preference for a large excess of the 

number of candidate events over expected background, but they do not know which 

choice of soft lepton momentum cut will yield a larger excess at the time that they make 

that choice.  

B is also a sequence of repetitions of the SLT top quark search, each of which 

collects the same amount of data using the same experimental setup, etc. But for each 

performance of the experiment in sequence B, the choice for the soft lepton momentum 

cut was caused partly by the preference of the experimenters for a large excess of 

candidate events over the expected background (this is made possible perhaps by the 

experimenters’ ability to examine the data before making that choice). 

What is wrong with the experiments in sequence B? The type-B experiment is not 

an inherently bad experiment, but one for which calculating a significance level would be 

practically impossible. 
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For an experiment in A, a reliable model of the experiment yielding a probability 

distribution is available—the model CDF used in their significance calculation. Such 

probabilistic models of the experiment are a prerequisite for significance calculations. 

The experimenter is not likely to be able construct such a reliable model for an 

experiment in B, however. Such a model would need to incorporate information about the 

intensity of the experimenter’s motivation to increase the value of the test statistic, the 

magnitude of the desired enhancement, and so on. Were such models available, tuning on 

the signal would not pose a problem. If you chose your cuts to maximize the value of the 

test statistic, you would simply need to remember to use the probability distribution for a 

type-B experiment rather than a type-A experiment. 

The predesignation rule gets its force from the difficulty of generating such a 

distribution. It is not the act of peeking itself that is troublesome, it is our inability to 

reliably represent the effect it has on the probability of various experimental outcomes 

(cf. Mayo 1996, ch. 9). We simply cannot, practically speaking, generate a reliable 

probability distribution for the experiment in which the experimenter’s zeal enters into 

the determination of the test statistic and the probability of getting an apparently positive 

outcome. Observing the predesignation rule helps to secure the conditions necessary for 

producing reliable probabilistic models of the experimental test, which are in turn 

necessary for generating significance calculations. When the rule is violated, significance 

calculations become unavailable, and so, it would seem, do severity assessments. 

Here it is worth noting the distinct kinds of difficulties that might be generated by 

violating the predesignation requirement. Attending to such distinctions will help to 

clarify the precise sense in which predesignation is instrumental towards the assessment 
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of evidence. One possibility is that the hypothesis will appear to pass a severe test with a 

particular experimental outcome when it does not in fact do so, as a result of using an 

inappropriate probability distribution for making a statistical calculation. In such a case 

the experiment does not after all yield evidence for the hypothesis. Some CDF members 

feared that just such a situation had arisen for the SLT results. 

A second possibility is that, having tuned on the signal, the experimenter becomes 

aware that he simply cannot determine what the correct probability distribution is for the 

test being performed, and hence cannot come to be justified in believing that the test 

carried out really is severe.8 Even if the conditions set forth in SR have been satisfied, 

and the experiment does yield evidence for the hypothesis under consideration, the 

experimenter cannot know this. Hence, although the experiment has yielded evidence for 

the hypothesis, from an epistemic point of view, the experiment is a failure.9 

A third possibility, however, is that an experimenter might violate predesignation 

and yet be able to know that the hypothesis under test has passed a severe test with the 

experimental outcome at hand, and hence that the outcome constitutes evidence for the 

hypothesis. Consider three scenarios in which the predesignation rule has been violated: 

(1) The experimenter knows herself to have no strong preferences for a particular 

outcome that might have influenced the choice of test statistic. (2) The experimenter 

recognizes that she has such preferences, but has a justified belief based on self-reflection 

that such preferences as she has had no causal effect on her in the circumstances under 

which she chose the test statistic. She trusts herself, and is justified in doing so. (3) The 

experimenter’s preference for a particular outcome has caused her to choose a particular 

set of cuts that would yield a value for the test statistic favoring that outcome. Overcome 
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by honesty, however, she adjusts the probability distribution she uses to calculate a 

significance level to take into account this effect, and finds that the hypothesis still passes 

a severe test, even with the adjusted probability distribution. 

Are such scenarios realistic? The last scenario seems fantastic for reasons already 

given: it is implausible to suppose that one can determine the probability distribution 

under such circumstances.  Scenarios (1) and (2) seem less outlandish, yet scientists 

appear to disagree among themselves about whether it is a good idea for experimenters to 

have much confidence in their capacity to detect the effects of their own preferences. One 

member of CDF, describing debates among CDF members over the propriety of looking 

at data before finalizing their cuts, cast the debates in terms of the potentials for both self-

knowledge and self-deceit: 

[Physicists in one CDF analysis group] really did agree to not look at the data 

until distinct milestones, before major conferences. . . . and I think that was good. 

. . . There’s some people that think that that’s sort of preachy and silly because . . . 

it’s as if we’re virgins and we can’t have sex before we’re married — this attitude 

toward the data that we have to be pure. . . . [T]hey think that you can look at the 

data and basically trust yourself to do the right thing, that if there’s enough people 

watching, people won’t be pathologically dishonest. . . . I think that if you look at 

the history of science and all the wrong measurements made by very good people 

. . . [then you find that] the ability to fool yourself is pretty subtle. (Tipton 1995) 

Nevertheless, let us suppose that one achieves such an enlightened state of self-

awareness. Although the data were known when the cuts were chosen, the knowledge 

that the probability model of one’s testing procedure is accurate assures the experimenter 



 20 

that the hypothesis passes a severe test. 

Still, trouble may persist. In the absence of predesignation, the experimenter may 

yet face a difficulty in justifying to others that the test in question was indeed severe, and 

that the experiment was an evidential success with respect to the advertised hypothesis. 

For the audience interested in evaluating her experiment, knowledge of the relevant facts 

concerning her motivations will be elusive, and hence so will the knowledge of the 

severity of her test. Although she knows the experimental result constitutes evidence for a 

particular hypothesis, she faces difficulty conveying such knowledge to other 

investigators in her field. As C. S. Peirce notes on a related point: 

The drawing of objects at random is an act in which honesty is called for; and it is 

often hard enough to be sure that we have dealt honestly with ourselves in the 

matter, and still more hard to be satisfied of the honesty of another. (Peirce [1883] 

1931-1958, 2.727)  

Distinctive methodological issues arise from the need to communicate with or 

persuade one’s peers. Interestingly, this point emerges also in Joseph Kadane and Teddy 

Seidenfeld’s discussion of randomization in terms of Bayesian decision theory and 

statistics (Kadane and Seidenfeld 1999). In their decision-theoretic treatment, 

randomization (for example, in the assignment of subjects to control and treatment 

groups in a clinical trial) reduces the cost of evaluation for the reader of the experimental 

report by rendering expensive information about the experimenter’s utilities irrelevant 

(although methods other than randomization can also accomplish this aim). However, 

they find that randomization, for a Bayesian, is not called for when an experimenter is not 

engaged in attempting to persuade others of a result. In Kadane and Seidenfeld’s 
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terminology, one can give a rationale for randomization in “experiments to prove,” but 

not in “experiments to learn.” Although Kadane and Seidenfeld discuss randomization 

rather than predesignation, my view is similar in that I regard predesignation as a useful 

means to achieving a particular methodological aim the relevance of which arises because 

of the need for the experimenter to persuade another. However, there are also important 

differences. In the error statistical analysis offered here, the aim is not simply to lower the 

cost to the reader of evaluating the argument, but to allow the reader to rule out a source 

of error that might otherwise remain troubling. Furthermore, because of the potential for 

fooling one’s self, predesignation is typically valuable in experiments to learn, just as it is 

in experiments to prove. That the need to communicate with and persuade one’s peers 

generates distinct methodological demands when viewed from such divergent evidence-

theoretic perspectives as error statistics and Bayesian statistics is itself worth noting. 

Are there steps that one can take to remedy these difficulties in spite of having 

violated predesignation? I believe there are, and will explain why in the next section. 

 

6. The Method of Counterfactual Significance Calculations 

Error statistical assessments of experimental results involve three elements: the 

model of the hypothesis, the model of the experiment, and the model of the data (Suppes 

1962; Mayo 1996, esp. ch. 5). The model of the hypothesis provides us with a probability 

distribution. The model of the experiment contains all of the statistically relevant 

information about the experimental test itself. The model of the data yields a test statistic. 

Mayo emphasizes an important experimental strategy in which one holds the 

experimental model and the data model constant while varying the model of the 
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hypothesis, in order to learn about various hypotheses from the results at hand. 

 In the strategy I wish to discuss, one holds the models of the hypothesis and the 

data constant, while varying the model of the experiment.10 Such “sensitivity analyses” 

are not novel, but I wish to explore the rationale for pursuing them.11 The question that a 

counterfactual significance calculation allows one to address is this: How sensitive is the 

assessment of the severity of the test that this hypothesis passed to changes in the 

description of that test? This question becomes important when an experimenter is 

uncertain as to which of several distinct descriptions of the test is most accurate. The 

greater that uncertainty is, the more important this question becomes. 

Sometimes, although one may be uncertain about which experiment one did, i.e., 

which reference class to use when calculating significance, one can nevertheless evaluate 

the experimental outcome counterfactually. On this approach, the experimenter evaluates 

a single set of data in the light of a number of different experiments that might have been 

done. The actual significance level of the result may remain forever unknown, but one 

can gain insight into just how sensitive the apparent significance level is to those aspects 

of experimental procedure about which one is uncertain. 

In the method of counterfactual significance calculation one hypothetically 

reconstructs the experiment without any link between the choice of cuts and the actual 

data at hand. Absent such a link, other cuts might have been chosen (within reasonable 

bounds—certain choices would simply not be physically reasonable given the aims of the 

experimenter). In this reconstruction, the experimenter can address the following 

question: assume we had not tuned our cuts on the signal (which in CDF’s SLT analysis 

may or may not have been done); what cuts might we have chosen? What, then, would 
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we now be saying about the significance level of our results?12 

The goal of this procedure is to determine whether one has evidence for a given 

hypothesis or not, and if so, to determine how strong that evidence is. This goal is 

pursued by attempting—qualitatively—to evaluate the severity of the test that the 

hypothesis has passed. Although an experimenter who is uncertain about the appropriate 

reference class for her experimental results cannot specify an accurate significance level, 

such statistical calculations are not an end in themselves, but a means to evaluate 

severity, on the error statistical approach. Thus, through counterfactual significance 

calculations, the experimenter may be able to gauge the severity of her test qualitatively 

even when a quantitative determination is impossible.13 

To illustrate this point, consider the significance calculations presented by CDF for 

different parts of the top search results, as well as other counterfactual calculations that 

they might have presented, if they had made other choices regarding the cuts in the SLT 

analysis.14 The SLT analysis was just one of three search strategies that were employed 

by CDF, and their full results involved combining the outcomes of all three. In table 1, I 

present CDF’s calculated significance levels (“CDF’s significance calculation”) for each 

of the three “channels” of their top search: the dilepton (DIL), secondary vertex tagging 

(SVX), and soft lepton tagging (SLT) searches. This table also presents my own 

calculations (“KWS’s significance calculation”) for those same values, along with 

calculations based on various changes that might have been made to the SLT analysis. 

(My calculations are based on simple Poisson statistics, using data presented by CDF in 

Abe et al. 1994 and ignoring “systematic” uncertainties. These calculations do not 

recreate CDF’s full statistical analysis, which involved subtleties beyond the simple 
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application of Poisson statistics.  Although my results are close to CDF’s in the cases 

where they can be compared, these numbers are meant only to suggest the type of 

strategy involved, and can not be used to draw reliable conclusions about CDF’s actual 

results.) 

 The apparent significance of the SLT search by itself is strongly dependent on the 

placement of the soft lepton momentum cut. This can be seen in lines 4–6, where the 

significance calculation in the last column changes by well over a factor of two. Taken by 

itself, this suggests that if there are doubts as to whether the SLT cuts were tuned on the 

signal, then the calculated significance based on the 2 GeV/c cut may indeed be a poor 

indicator of the actual severity of the test.  

 Combining all three searches yields a somewhat different picture, however. The 

SVX search and the SLT search picked out some of the same events. Hence, the number 

of candidate events that were selected by at least one search algorithm does not simply 

equal the sum of the numbers selected by each algorithm (line 7 is not equal to the sum of 

lines 1, 2, and 4). None of the three events selected by the SLT search that fell into the 

momentum region between 2 and 4 GeV/c were tagged by the SVX algorithm, but three 

of the events in the higher-momentum region were. Hence, reporting the result in terms 

of the number of events chosen by at least one search algorithm, the SLT contributes 4 

events to the total (beyond those in the DIL+SVX sample), provided that the cut is kept at 

2 GeV/c. However, although three of those events are lost by moving the cut to 4 GeV/c, 

there is also a significant decrease in the expected background. Hence a further increase 

in the cut to 6 GeV/c, which does not remove any events from the candidate sample, cuts 

out still more background, and the apparent significance of the combined results is 
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restored to what it was with the cut kept at 2 GeV/c.  

While the apparent significance of the result based on adding together all three 

search channels appears to be somewhat sensitive to the placement of the SLT 

momentum cut, it is not strongly sensitive, provided the result is reported in terms of the 

number of events selected by at least one algorithm. 

If they could be taken seriously, the above calculations would suggest that the 

results of the SLT present at best very weak evidence for the top quark. The apparent 

significance of the SLT results depends strongly on the SLT momentum cut, which might 

have been chosen to yield a much higher value for its apparent significance. For the 

evidence claim based on the results of all three searches, the picture is not so bleak. 

Although the placement of the soft lepton momentum cut makes some difference in the 

apparent significance of the combined result, it is not so great as to undermine drastically 

whatever evidence claim might be made on the basis of these results. 

 

7. “Subjective Circumstances” and Objective Evidence 

Charles Sanders Peirce, an insightful advocate of the predesignation rule in 

experimental methodology, once wrote: 

[I]n demonstrative reasoning the conclusion follows from the existence of the 

objective facts laid down in the premisses; while in probable reasoning these facts 

in themselves do not even render the conclusion probable, but account has to be 

taken of various subjective circumstances—of the manner in which the premisses 

have been obtained, of there being no countervailing considerations, etc.; in short, 

good faith and honesty are essential to good logic in probable reasoning. (Peirce 
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[1883] 1931-1958, 2.696) 

Peirce raises a problem. The error statistical approach to inference is supposed to 

yield an objective concept of evidence, and yet, as Peirce puts it, “account has to be taken 

of various subjective circumstances”—such as how cuts were chosen, whether those who 

chose them had seen the data, how it was decided to stop collecting data, etc. Some 

critics have charged that the apparent relevance of such matters indicates that there are 

undesirable “subjective” elements in the theory of significance testing (cf. Howson and 

Urbach 1993). 

My analysis suggests a different conclusion, however. Rather than calling into 

question the value of significance testing, the relevance of considerations such as 

predesignation calls for careful attention to the circumstances in which such tests are 

conducted, and the sources of error arising from the experimenter’s own actions. Peirce’s 

“subjective circumstances” are relevant to the question of whether the experimenter is 

applying his statistical tools correctly, so that they can reliably be used to answer the 

questions—such as the severity question—for which they are employed. The wrong kind 

of behavior on the part of experimenters introduces an element into the experiment itself 

that renders the results of the standard statistical calculations unreliable. Similarly, if I am 

using a thermometer to measure the air temperature, but absent-mindedly leave my 

thumb on the bulb of the thermometer, I will get an inaccurate measure of air 

temperature. We would not say, however, that because facts about my “subjective 

circumstances” are relevant to my reading of the thermometer, its output is merely 

subjective.15 Rather, the experimenter must simply take care that the instrument, whether 

it is a thermometer or a statistical tool, is measuring what he thinks it is measuring. 



 27 

Peirce’s phrase “subjective circumstances” lends itself perhaps too easily to 

misinterpretation here. On the view I am advocating, we ought to take “subjective 

circumstances” to refer simply to facts regarding the subject (i.e., person) who gathered 

the information that forms the basis of the inference. It hardly needs to be pointed out that 

such facts may be as objective as you like, in the sense of being independent of individual 

opinions as to their factuality. (There is some fact about the role that knowledge of the 

data played in the determination of the SLT cuts, as elusive as that fact may have been to 

the members of CDF.) Reading Peirce in this way preserves the general outlook of his 

theory of probable inference, in which probability is construed objectively in terms of the 

relative frequency with which a certain “mode of inference . . . will carry truth with it” 

(Peirce [1878] 1931-1958, 2.650). 

On the interpretation here proposed, predesignation is simply one technique among 

many for ruling out error and ensuring the reliability of one’s test procedure. The 

experimenter is the only part of the machinery of the experimental procedure who is able 

to reflect on her own potential contributions to the possibility of error (a phototube can 

not do this!). She can then use that knowledge, just like knowledge of the other parts of 

the experimental apparatus, to engineer the experiment’s causal linkages, including those 

in which she herself is involved, to ensure its overall reliability. 

Experimenters seek not only to have reliable experimental procedures, but also to 

know the degree to which those procedures are reliable. For this, they need accurate 

probabilistic models of their experimental tests. It is something of a commonplace to note 

how the rhetoric of the scientific research report tends to hide the agency of 

experimenters, as well as their partisanship with respect to the very questions they seek to 
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address. This rhetorical practice, whatever its motives may be, reflects an epistemic 

requirement of central importance. Having a reliable model of the experimental test being 

performed demands that the mysterious workings of individual or collective 

experimenters’ psyches be made statistically irrelevant. A complete picture of the 

scientific enterprise must recognize the importance of this requirement, but must also 

recognize just how much work, how much active engagement of those very same 

psyches, it can take to achieve that elusive goal.  
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Search Used  
(SLT momentum cut) 

no. of 
candidate 
events 

expected 
background 

CDF’s 
significance 
calculation 

KWS’s 
significance 
calculation 

1. DIL 2 0.56 0.12 0.11 
2. SVX 6 2.3 0.032 0.030 
3. DIL+SVX 8 2.86 –– 0.0091 
4. SLT(2) 7 3.1 0.041 0.039 
5. SLT(4) 4 1.7 –– 0.093 
6. SLT(6) 3 1.1 –– 0.10 
7. DIL+SVX+SLT(2) 12 5.7 0.016 0.014 
8. DIL+SVX+SLT(4) 9 4.3 –– 0.032 
9. DIL+SVX+SLT(6) 9 3.7 –– 0.014 
 

Table 1 
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FOOTNOTES 

                                                 
1 Peirce is often cited as an advocate of the novelty requirement. However, Peirce’s 

position is to advocate predesignation as a means of avoiding being misled regarding the 

error rate of one’s inference procedure—a position quite distinct from any of the 

temporal or heuristic novelty requirements advocated by Whewell or the Lakatosians. 

Thus, Peirce’s position comes very close to that advocated in this essay. This is especially 

apparent in his 1878 essay “The Order of Nature” (1931-1958, 6.395–427, esp. 400–409) 

and his 1883 “Theory of Probable Inference” (1931-1958, 2.694–754, esp. 735–740). See 

Mayo 1993;1996, 429–32 and Staley 2001, ch. 7 for discussions. 

2 I have previously discussed the relationship between the novelty requirement and the 

problem of tuning on the signal in Staley 1996. I have since developed an improved 

analysis of that relationship; cf. Staley 2001, ch. 7. 

3 Informally, the likelihood principle asserts that, if an experiment T yields result E, then 

the likelihood of hypothesis H on E (defined to equal the probability of E given H) 

summarizes all of the information from T that is relevant to evaluating the evidence for 

H. See Berger and Wolpert 1984 for a discussion and defense. 

4 In the case under discussion here, defining criteria of data selection also helps to define 

the test statistic. 

5 Insofar as the predesignation of stopping rules is simply another aspect of the 

predesignation of statistical tests in general, the difficulties discussed in Mayo and Kruse 

2000 in explicating methodological intuitions regarding stopping rules from the Bayesian 

and likelihood-theory perspectives already provide reasons to wonder whether those 

theories can give a coherent account of the issues discussed here. 
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6 CDF members worried about tuning on the signal in other aspects of the experiment as 

well. I discuss another manifestation of the worry in Staley 1996. One point that deserves 

emphasis here is the difference between the debate over the best choice for soft lepton 

momentum cut and the debate over the evidential force of results based on the choice that 

was made. To simplify slightly, the argument over where to place the cut was a matter of 

optimizing the SLT counting experiment (where an optimal procedure would maintain a 

high enough ratio of expected signal to expected background within the range of possible 

top masses CDF sought to cover, without too dramatically reducing the absolute size of 

the expected signal). The dispute over tuning on the signal was a question of whether the 

SLT counting experiment was biased, in light of the knowledge CDF physicists had of 

the data in hand. The two disputes were related as follows: the fact that the cut was 

placed at 2 GeV/c suggested to those CDF physicists who regarded that choice as sub-

optimal that the choice might have been motivated by a desire to produce a more 

impressive result, thus biasing the testing procedure. The issues are in fact quite complex 

(see Staley 2001). 

7  This calculation assumes the accuracy of the background estimate, which determines 

the null distribution. CDF considered their background estimate “conservative,” and 

hence probably too high. Although they considered one of their own assumptions to be 

false, the error was virtuous insofar as it enhanced the severity of their test. 

8  Here and in what follows, I assume that the “fit” requirement (SR1) is satisfied, and is 

known to be satisfied by the experimenter.  

9 For an objective concept of evidence such as that defined by the error statistical theory, 

the fact that e constitutes evidence for h does not entail that the experimenter knows, or 
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even believes, that this is the case. See Achinstein 2001 for a defense of such an objective 

concept of evidence, but treated in terms of a theory of evidence that is not error 

statistical. 

10  Strictly speaking, it is the data themselves rather than the data model that are held 

constant. Changing the experimental model by changing the data selection criteria means 

changing the test statistic, which is part of the data model. In the present case, holding the 

data model roughly constant while varying the experimental model amounts to supposing 

that all measurements made on particles produced in collisions remain the same, but 

supposing that different cuts were chosen to define a candidate event.  

11 Allan Franklin discusses a number of experiments in which the tuning of cuts on 

apparent signal posed a problem, and sensitivity analyses were used in response; see 

Franklin 1998. 

12  Some of these calculations were carried out within CDF and shown at collaboration 

meetings. They did not then become part of CDF’s official presentation of the results of 

their top search. At least one member of CDF, Fermilab physicist Morris Binkley, 

proposed that the official results include just such calculations. Skeptical of the officially 

quoted significance levels CDF presented, Binkley proposed that results be shown using 

a variety of cuts (Binkley 1995). 

13  A similar approach can be employed where questions arise about whether a pre-

determined “stopping rule” has been followed: From the data collected, sample smaller 

subsets of data, and calculate apparent significance levels based on those subsets. In this 

way, the sensitivity of the significance level to the precise stopping-point in gathering 
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data can be evaluated. One must, of course, take the smaller size of the resulting samples 

into account in assessing the results of such an analysis. 

14  The calculations presented here are based on counts of candidate events. CDF’s 

official significance calculations are based on counting “tags” rather than events (Abe et 

al. 1994, 3004–3006). Significance levels based on counting tags are more difficult to 

calculate. Furthermore, because counting tags allows a single event to be counted in more 

than one search channel, the conclusions suggested by the calculations presented here do 

not necessarily carry over to the results presented in terms of tags. Hence the full story of 

how counterfactual significances can shed light on the results in CDF’s Evidence paper 

exceeds what can be presented in one short paper. 

15 Deborah Mayo makes a similar point regarding the fact that experimenters must 

exercise judgment in the pre-trial specification of a test’s properties. See Mayo 1996, 

405–411. 


